Node Localization and Tracking Using Distance and
Acceleration Measurements

Benjamin R. HamiltonXiaoli Ma, Robert J. BaxleyandBrett Walkenhorst
School of Electrical and Computer Engineering Information Technology and Telecommunications Labosator
Georgia Institute of Technology Georgia Tech Research Institute
Atlanta, Georgia, USA 30332 Atlanta, Georgia, USA 30318

Abstract—Advances in miniaturized wireless and sensing tech- obstructions such as buildings or interference such as that
nologies have enabled the construction of cheap, low-powered, caused by hostile jamming can render GPS useless. Addition-
portable wireless devices capable of forming ad hoc networks. ally GPS receivers require a significant amount of power and
While these networks have shown enormous potential in ap- . . . S
plications such as remote sensing and target tracking, these comple>_<|ty that is FO_O expenswe for some applications.
applications require the devices to determine their own location. ~ Despite these difficulties, numerous recent works have fo-
Additionally, devices capable of self-localization can also be used cused on this problem. Methods have been proposed to use
to implement location-based services or to improve coordination angle, distance or delay measurements [2]-[4]. Some mgthod
between first-responders to disaster sites or infantry in tactich even use connectivity information, such as hop counts. Exam
situations. Existing techniques such as GPS may not be available . . ’ T
due to design or environmental constraints, so other methods ples l'nclude LSVM[3], Wh'ch uses the SUpport vector maCh'n?
need to be devised. learning method to determine node locations and Sequential

Previous works have proposed methods for wireless devicesMontecarlo Localization [6], [7] which uses a particle filte
to self-localize based on received signal strength (RSS), butbased on connectivity information to track node positions.
these methods offer limited accuracy due to the large error Several proposed methods use distance or received sig-

in RSS measurements. Recognizing the trend for these portable al strength (RSS) measurements to determine node loca-
wireless devices to contain acceleration sensors, we propose arf! g

algorithm to combine these acceleration measurements with RSS tion. Methods have been proposed using techniques such
readings to achieve accurate localization. We apply a distributed as Semidefinite Programming [8], Particle Filters [9] and
extended Kalman filter to track position based on these two Probability-based Maximum Likelihood [10]. Multilateiai
measurements and a kinematic node movement model. This[11] [12] uses the observation update portion of an exténde
algorithm is able to take advantage of correlations between Kalman filter to estimate node locations. The Ce&nRao
successive location estimates to improve estimation accuracy. We ) A
calculate the posterior Cramér-Rao bound for this algorithm bound (CRB) for the location estimation accuracy of these
and analyze it through simulation. Our analysis shows that by methods has also been calculated [13]-[15]. These methods
utilizing the acceleration information, the network is able to self- do not take advantage of the accelerometers available oy man
localize despite the large inaccuracy in RSS readings. wireless platforms, which could be used to further increase
localization accuracy.

Previous works have also looked into using the accelerom-

Progressive advances in semiconductor technologies havers available on many wireless devices. A “Smart Kinder-
decreased the size, power requirements and cost of wilddessgarten” [16] used the accelerometers to determine the -orien
vices. Such advances have allowed modern wireless devicesation of a subject. Another work [17] used the acceleromete
be increasingly mobile and capable. These advances have alsd a magnetometer to aid in localization by detecting node
enabled the use of Micro-electromechanical systems (MEM@&jentation and whether it has been moved.
technology to construct a variety of cheap and efficient sen-In this paper we present a novel, hybrid location tracking
sors. These sensors can be combined with wireless molsistem combining distance and acceleration measurements
devices to construct cheap, low-powered, portable wisele® produce more accurate location estimates than otherwise
devices capable of forming ad-hoc networks. possible. We analyze this method theoretically and dehee t

These networks have shown enormous potential in applid@esterior Crarar Rao lower bound. We analyze the expected
tions such as environmental and habitat monitoring, ifmrus performance through simulation.
detection, and target tracking [1]. Many of these appl@ai  This paper is organized as follows. In Section Il, we de-
are greatly enhanced when the nodes in the network are adteibe the system model. In Section 1l we apply this model to
to determine their own location. Nodes that are capable tbfe location tracking problem to produce our proposed laybri
self-localization can also be used for location-basedisesv location tracking algorithm. We also derive the posterior
or to improve coordination between first-responders atstiésa Cramér Rao bound on its performance. We verify the proposed
sites or infantry in tactical situations. Alternative Itization algorithm’s performance through simulation in Section &vigd
techniques such as GPS may not be available in some areasiclude in Section V.

I. INTRODUCTION



[1. SYSTEM MODEL are beyond the scope of this paper. Instead we assume that
nodes directly measure the absolute acceleration withtiaeldi

We consider a network consisting @f, static reference ) ) ’ " Y
aussian noisg with varianceo;: @ = a + 1.

nodes andV,, mobile nodes distributed in a two dimensionaf®
region such that the density of mobile nodesIis This l1l. L OCATION TRACKING

network consists of reference nodes that are stationaty wit Wi hvbrid location tracki " hich
globally known locations and mobile nodes with unknown € propose a hybrid location fracking system which uses an

locations. The mobile nodes move according to the movemeq%(ttend(ad Kalman filter to track the position and velocityrs t
model described in Section II-A. All nodes are assumed obile nodes. In this algorithm, the acceleration measargm
have a maximum transmission rén&e rom the accelerometer will be added as a control input to
the extended Kalman Filter, with the variance from this mea-
A. Movement Model surement being used as the state noise. We assume that, since
We consider a movement model where the velocity is mo g;celerometer measurements require significantly lesepow
eled as an autoregressive (AR) random process. The veltacitt an d|st'ance .measu'rements, nodes check thg aqcelerometer
assumed to have a state equation suchuthatl] = v[t]-+uwl{] somek times in the interval between synchronizations over
whereu[] is the velocity at time andw[{] is Gaussian random the wireless interface, and that the interval between these

noise of variance 2 . The position is updated using the discret hecks 'TT' '_A‘n alternatlveffor:mulatlon would bg to -track h
kinematic equationz[t + 1] — 2[f] + v[{]. the acceleration as part of the system state, but since the

distance synchronization period should be large enough tha
B. Measurement Model the correlation in acceleration between these periodsiie qu

We assume that nodes are able to obtain a measureSSll, we can avoid the complexity of additional state Valga
the distance to each of their neighbors. We consider tWglile still achieving similar performance. _ _
measurement models: one where distance is measured, anf'® €xtended Kalman filter consists of two main parts: the
another that uses the received signal strength. Additignae state update and innovation update. In the state update, the

assume mobile nodes are capable of measuring their absofifi€ Update matri¥ is applied to the previous stat|i]
acceleration. and the previous mean squared error (MBH)¢]. The control

1) Using distance measurements the first model, the INPUtcl?] is also added:
n_ode is assumed to simply record a noisy measurement of the Ot + 1[t] = FO[t]t] + clt], (1)
distance:
d=d+~, E[t + 1]t] = FE[t|t]F + W. 2

whered is the measurement] is the actual distance, and For our filter, the statd consist.s of the ppsitio(ls“, s¥) and
is Gaussian distributed noise. The distance for a given lifRlocity (v*,v¥) of all the mobile nodes in the network:

is calculated as the euclidean distance between the nod&s: [SJ Y ouf oY ... T Y oo oY ]T
involved: d,,,,, = \/(sZ — s%,)2 + (s}, — s%)?2, where(sZ, s¥) 0 70 7070 Nm=1 "Nm—1 "Nm=1 "Nm—1l -

is either the position of mobile node or the position of the We will derive the state update matr, the state covariance
reference node, if n is a reference node. matrix W, and the control input in Section IlI-A.

2) Using RSS as a proxy for distancélost common  The innovation update consists of incorporating the mea-
devices do not have specialized hardware capable of direcgurement with the current estimate. The measurenieist
determining distance. Instead, the distance is usuallyueal assumed to be a functioh(d) of the state plus some noise
lated from the received signal strength (RSS) or the height¢[t] (with covariancel’):
the peak of the correlation from the correlator in the reseiv R
The primary difference between the two is that the correfati 2[t] = h(Oftt]) + 1]

peak is more resistant to interference. In the case of localization, the measurement vector comtain

The RSS and peak correlation measure the received sigif individual measurements for each of thelinks in the
magnitude. We model this received signal magnitude as a pw@gwork: 2 — [20 21 --- 2r_1]. Each of these individual

function of distance disturbed by additive Gaussian noitle Wmeasurements are calculated as:

zero mean and varian(z;e?y. So the RSS and peak correlation a

can be calculated a8 = d~“ + v, wherea is the distance 2= ((sh —sh)? 4 (s —s¥,)°) 2,

attenuation exponent. Note that the distance measuren\?/%re thel™ link is between nodes and nodenm.

model described previously can be thought of as simply Agince the function(6) is nonlinear in this case, we ap-

spguil calse Otf th|stode| with T sl\; L. cabl proximate it with its Jacobian evaluated at the estimatate st
) Acceleration MeasurementsMany common portable forming the Jacobian matri¥I[t + 1]. The observation can

wireless devices have begun incorporating acceleration Sthen be incorporated into the state estimate using the Kalma
sors. The readings from these sensors can be combined ifai K|[i] as a weighting factor

either readings from a rotation sensor or compass to measure
the absolute acceleration. The methods for achieving this S[t] = H[t + 1|E[t + 1|/ H[t + 1]¥ + T 3)




K[t] = E[t + 1|t]H[t + 1]7S[t]T (4) and its covariance becomes:

3 2
Ot + 1]t +1] = 0t + 1)) + K (z — h(0]t + 1]t]))  (5) W = 027? T2(k§k; 1) T;%
2
Bl + 1t +1] = (1 - EH[t + 1) E[t + 1] ©) We use the mean of the state noise from Eq. (10) as the
For the localization problem, this Jacobian is shown i@ontrol inputcl[t]. Instead of performing the summation, we
Eq. (7). maintain an accumulatot, which keeps a running total of
the offset in position and velocity due to the acceleration
A. State Update measurements. This vector is updated according to:
In order to determine the state update matlx state a[n]T?(k —n+0.5)
covariance matriW, and the control input, we look briefly Ca[n +1] = eq[n] + { aln|T ] ’
into how state changes due to a measured acceleration will ] ) )
affect the state transition fromj|¢] to 6]t + 1|¢]. where a[n] is the measured acceleration at th time the

While the acceleration has a linear effect on Vebcit)accelerometer was checked during the current interval and
its affect on position is nonlinear function of time. ThisCe[0] = 0. This accumulator is then used as the control input

means that we cannot directly integrate the measurementdigt ¢ = Ca[k]) each time the node synchronizes over the

acceleration as the control input. For simplicity, we cdesi Wireless interface. _ _ _
the 1-dimensional case at a single node. Since each of th&Note however that this technique will tend to underestimate

dimensions and each of the nodes progress independeitly, the error _due_to the ob_servations of the acceleration. TLI'EE tr
derivation can be easily generalized to a full 2-dimengiondcceleration is a continuous process, and only the instanta
network. Nodes use the kinematic equations to update thBfOUS acceleration is measured. This measurement is used

position each time they checks the accelerometer: as the average acceleration over the entire interval betwee
checks. Since the acceleration actually changes durirgy thi
z[n] = z[n — 1] + v[n — T + 0.5a[n]T? interval, there will be an additional amount of error. If the
v[n] = v[n — 1] + a[n]T, checking interval is made sufficiently small, the accelerat

will be rougly constant, and this error will become negligib
where z[n — 1] and v[n — 1] are the current position and . , ,
velocity estimates respectively, angh] is then' acceleration B. Modified Multilateration
measurement. For comparison purposes we define a trivial modification
In matrix form, we can write: of the Multilateration algorithm [11], [12] allowing it tose a
full extended Kalman filter to track the position. The orain

- afm)7? method assumed a static network, and only used the innovatio
x[n] =F.x[n— 1]+ 2 |, ) . o
a[n|T update portion of the Kalman filter. We extend this into a
full extended Kalman filter by assuming the position can be
with F. — 1T _ modeled as an AR process. This means that the state update
01 equation will be very similar to Eq. (1) in our hybrid locatio

Sincex|[n| is updated: times between each synchronizatiofyacking algorithm:
interval, we expres[k] in terms ofx[0] as:

alk—m]T?
2 .
alk —m|T

0t + 1|t] = FO[t|¢] + wt],

(8) where the staté only contains node positions arid is the
identity matrix. We will compare our hybrid location traokj

If we let x[0] be a node’s state in the Kalman filter statglgomhm to this method in Section III-C and Section IV.

vector 0[t|t] and x[k] be its state it + 1|t] and compare C. Theoretical Bounds on Performance
Eq. (8) to the state update equation used by the Kalman filter;, [18] the Posterior Cragr Rao Bound (PCRB) for nonlin-

k—1
x[k] = FFx[0] + Z F"

m=0

(Eq. (1)), we find thatF = F* = Ll) kﬂ and wn] = ear filtering was proposed. In this section we apply this ldoun
S— to the proposed tracking algorithms.

ij m| 5 | The Posterior Cragr Rao Bound (PCRB) [18] provides
m=0T taln —m|T a lower bound for the mean-squared error (MSE) due to
The mean of the state noise is then: estimation or a non-linear dynamic system. This error lower

k-1 vlnl4oln-1] bounded by the diagonal elements of the inverse of the Fisher
W= Zn—0k12] (9) information matrixJ. Since we assume the state and observa-
T3, —oaln] tion noise are both additive Gaussian and the state update is

, (10) system state at timé+ 1 based on the first observations
using the recursion:

T2 Zk—l (a[n] + (k= n)afn — 1])] linear, we can express the Fisher information matrix for the



a+2

—a(st —s2)z,~  when thek" link is between nodes andm andsZ is thei™ component o)
(B[] = —a(s¥ — 8%)2,:% when thek™ link is between nodes andm and s is thei™ component of)
0 else
J[t+ 1) = D2[f] - D*' (I[] + D) ' D', 25 S o oo
where 2t 0 © o O o O
15l o 0 © 0 © O e
D" = F/'W~'F o o o o o o o .
D2 = —FAW-! gl o) 0 o 0o o 0 O
D2 — (D12)H o5 o o o o o o o 0
D22[ﬂ —w! + H[ﬂHl—ale[t]. or (@) O O X O o O
osl © 0 © o © 0o © o
o o © o o o ©
The PCRB for the covariance of the estimate of the system e o O o o o O °
state at timet + 1 is then given asJ[t + 1]~ 1. In the case -1.5 o o o o o o e
where the matridi][t] is relatively constant and the system has _,| o o o o o o
reached a steady-state, the steady state estimation arrdrec 5 o o5 o
calculated as the solution fdr,, in the Riccati equation: '2-57 L
-3 -2 -1 0 1 2

Jo =D* D% (J, +D'") ' D

. . . . . ig.
This solution can be found numerlca"y in MatLab with th{/lobile nodes are open circles. The open circle containingkarepresents

the location where the PCRB shown in the following plots waieh.

‘dare’ function. The steady-state PCRB is: PCRBI!.
We apply this PCRB to both the hybrid location tracking
algorithm we described previously and the modified multi-
lateration algorithm described in Section 1lI-B. The netlkwo
(shown in Figure 1) was chosen to be similar to the hexagonal
networks previously used [14] to evaluate the CeanRao
Bound for localization in static networks. In order to avoid
edge effects, we only consider the PCRB of the position of a
single node located near the center of the network (marked in
the figure with an ‘x’). We examine the PCRB using both the
distance ¢ = —1) and the RSS« = 4) measurement models.
Figure 2 shows the PCRB as a function of the observation
noise powerr2, and Figure 3 shows the PCRB as a function
of the accelerometer noise powe?;. From the plots it is ap-
parent that the hybrid location tracking algorithm outperis
multilateration. When the observation noise power is high
relative to the accelerometer noise power, the hybrid ionat
tracking algorithm has a bound relatively independent ef th
observation noise. When the observation noise becomes smal
enough relative to the accelerometer noise power, the dybri
location tracking algorithm approaches the bound achiéyed
multilateration until they are roughly collinear. This nmeahat
the hybrid location tracking algorithm is able to take adege
of the low noise power from either measurement source.

(@)

1. Network used to estimate PCRB. Reference nodes areciales.
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Fig. 2. Steady-state PCRB vs. Observation Noisg (1B)

The two operating regions are also apparent in Figure id.contrasted with Figure 4(b), where the hybrid locati@tlk-
This figure contains two plots of the PCRB versus netwoikg algorithm and multilateration exhibit similar boundsis
density. In Figure 4(a), the observation noise is high re&dat once again shows that the hybrid location tracking algorith
to the accelerometer noise, so the hybrid location trackiig able to take advantage of the relatively higher accuracy
algorithm’s bound primarily determined by the acceler@netavailable from the acceleration measurements to compensat

noise, and is relatively independent from network den3itys

for the higher accuracy RSS measurements.
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D. Distributed Calculation

The calculation ofK in Eq. (4) for a large network of
nodes can be very computationally intensive. To reduce the
computational cost, we split the problem and solve each node
separately using the estimated positions of the other nasles
reference nodes as in [11]. Then we iterate several times to
allow the propagation of information between nodes.

One problem with treating all of the neighboring nodes as if
they are reference nodes is that it does not consider the erro
in the node’s position estimate, causing it to underesémat
the resulting error in the the location estimate. This lmcat
error will cause the Kalman filter to converge to a suboptimal
location estimate. We have attempted to remedy this by using
a modified calculation of the Kalman gain from Eq. (4):

K = (EHY) (HEH" + T +Q)) ",

whereQ is a diagonal matrix containing the effective variance

in the observed measurement due to uncertainty in the positi

of this reference node. This can be found to be one of the
diagonal elements in that reference noddEH which uses

the current node as a reference node. These values can be
exchanged by the mobile nodes at the same time they make
their measurements.

This method will cause the location estimates to converge
faster because it puts more weight on the measurements from
reference nodes, whose location is known. Since this method
still does not accurately represent the correlation in tiooa
error that develops between mobile nodes, this may cause the
to overestimate their location error. In our simulations,vave
not found this overestimation to be a problem.

IV. SIMULATION

We simulate our hybrid location tracking algorithm and
the modified multilateration location tracking algorithm a
network with V,,, = 60 mobile nodes andV, = 4 reference
nodes to compare the accuracy of the localization and tngcki
estimates. The mobile nodes are randomly placed in a square
region. This region is sized such that the nodes have a gtensit
between 1 and 30 nodes per square unit. Each node is assumed
to have a communication range bfunit, and be capable of
making measurements to nodes within this distance. Referen
nodes are placed at the 4 corners of the square.

Mobile nodes move according to a movement model similar
to the random waypoint model [19]. Since the random way-
point model has been shown to suffer from speed decay, where
the average speed of nodes approaches time progresses
[20], we implement a modified version. In our random direc-
tion model, nodes select a random direction (uniform from
—7 to w radians), a random speed (uniform frénto 1), and
two random intervals (both to Tmax = 0.58). The first time
length describes the duration the node will accelerate fitem
current velocity to the new velocity. The second describes t
duration the node will have constant velocity. The nodes are
constrained to lie within the square. Mobile nodes thanapte
to leave the square have an appropriate acceleration dpplie



10" ‘ ‘ ‘ ‘ additional acceleration measurements to generate higlcer a

% %+ Multilateration racy location estimates despite the low distance measuteme
Q ~-O- - Hybrid accuracy common with RSS measurements.
2
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